Nowadays, all cars feature semiconductors. There are more than 50 of them in every vehicle that rolls off the production line. The new microchips made of silicon carbide (SiC) that Bosch has developed will now help electromobility make a great leap forward. In the future, the chips made of this extraordinary material will set the pace in the power electronics – the command center for electric and hybrid vehicles. Compared to the silicon chips used to date, SiC semiconductors have better electrical conductivity. This enables higher switching frequencies while also ensuring that much less energy is dissipated in the form of heat.
Bosch manufactures the new generation of semiconductor chips at its Reutlingen plant, 25 miles south of Stuttgart. At this plant, the company has been turning out several million microchips every day for decades.
SiC: a booster for e-mobility
Semiconductors made of silicon carbide set new standards for switching speed, heat loss, and size. It all begins with additional carbon atoms, which are introduced into the crystalline structure of the ultra-pure silicon used to manufacture semiconductors. The chemical bond created in this way turns the semiconductor chips into real powerhouses. Especially for applications in electric and hybrid vehicles, this means many advantages. In power electronics, they ensure that 50 percent less energy is lost in the form of heat. This saving translates into more efficient power electronics and more energy for the electric motor and therefore for the battery range. Motorists can drive 6 percent further on a single battery charge. In this way, Bosch is addressing one of the stumbling blocks for potential buyers of electric cars: nearly one in two consumers (42 percent) decide against buying an electric vehicle because they are afraid the battery will run out while they are on the road. In Germany, this anxiety is even more prevalent, affecting 69 percent of consumers (source: Consors Finanz Automobile Barometer 2019). Alternatively, car manufacturers can make the battery smaller for a given range. This reduces the cost of an electric car’s most expensive component, which in turn reduces the vehicle’s price.
The reason is that the new technology also offers further potential savings down the line: the much lower heat losses of the chips, combined with their ability to work at much higher operating temperatures, mean that manufacturers can cut back on the expensive cooling of the powertrain components. That has a positive impact on electric vehicles’ weight and cost.
Please click here to view the full press release.
SOURCE: Bosch